Workflow with Conditional Branching ✅
Workflows often need to follow different paths based on some condition.
This example demonstrates how to use the branch
construct to create conditional flows within your workflows.
Define Planning Agent ✅
Define a planning agent which leverages an LLM call to plan activities given a location and corresponding weather conditions.
import { Agent } from '@kastrax/core/agent'
import { openai } from '@ai-sdk/openai'
const llm = openai('gpt-4o')
const planningAgent = new Agent({
name: 'planningAgent',
model: llm,
instructions: `
You are a local activities and travel expert who excels at weather-based planning. Analyze the weather data and provide practical activity recommendations.
📅 [Day, Month Date, Year]
═══════════════════════════
🌡️ WEATHER SUMMARY
• Conditions: [brief description]
• Temperature: [X°C/Y°F to A°C/B°F]
• Precipitation: [X% chance]
🌅 MORNING ACTIVITIES
Outdoor:
• [Activity Name] - [Brief description including specific location/route]
Best timing: [specific time range]
Note: [relevant weather consideration]
🌞 AFTERNOON ACTIVITIES
Outdoor:
• [Activity Name] - [Brief description including specific location/route]
Best timing: [specific time range]
Note: [relevant weather consideration]
🏠 INDOOR ALTERNATIVES
• [Activity Name] - [Brief description including specific venue]
Ideal for: [weather condition that would trigger this alternative]
⚠️ SPECIAL CONSIDERATIONS
• [Any relevant weather warnings, UV index, wind conditions, etc.]
Guidelines:
- Suggest 2-3 time-specific outdoor activities per day
- Include 1-2 indoor backup options
- For precipitation >50%, lead with indoor activities
- All activities must be specific to the location
- Include specific venues, trails, or locations
- Consider activity intensity based on temperature
- Keep descriptions concise but informative
Maintain this exact formatting for consistency, using the emoji and section headers as shown.
`,
})
export { planningAgent }
Define Weather Workflow ✅
Define the weather workflow with 3 steps: one to fetch the weather via a network call, one to plan activities, and another to plan only indoor activities. Both using the planning agent.
import { z } from 'zod'
import { createStep, createWorkflow } from './vNext'
function getWeatherCondition(code: number): string {
const conditions: Record<number, string> = {
0: 'Clear sky',
1: 'Mainly clear',
2: 'Partly cloudy',
3: 'Overcast',
45: 'Foggy',
48: 'Depositing rime fog',
51: 'Light drizzle',
53: 'Moderate drizzle',
55: 'Dense drizzle',
61: 'Slight rain',
63: 'Moderate rain',
65: 'Heavy rain',
71: 'Slight snow fall',
73: 'Moderate snow fall',
75: 'Heavy snow fall',
95: 'Thunderstorm',
}
return conditions[code] || 'Unknown'
}
const forecastSchema = z.object({
date: z.string(),
maxTemp: z.number(),
minTemp: z.number(),
precipitationChance: z.number(),
condition: z.string(),
location: z.string(),
})
// Fetch weather step
const fetchWeather = createStep({
id: 'fetch-weather',
description: 'Fetches weather forecast for a given city',
inputSchema: z.object({
city: z.string(),
}),
outputSchema: forecastSchema,
execute: async ({ inputData }) => {
if (!inputData) {
throw new Error('Trigger data not found')
}
const geocodingUrl = `https://geocoding-api.open-meteo.com/v1/search?name=${encodeURIComponent(inputData.city)}&count=1`
const geocodingResponse = await fetch(geocodingUrl)
const geocodingData = (await geocodingResponse.json()) as {
results: { latitude: number; longitude: number; name: string }[]
}
if (!geocodingData.results?.[0]) {
throw new Error(`Location '${inputData.city}' not found`)
}
const { latitude, longitude, name } = geocodingData.results[0]
const weatherUrl = `https://api.open-meteo.com/v1/forecast?latitude=${latitude}&longitude=${longitude}¤t=precipitation,weathercode&timezone=auto,&hourly=precipitation_probability,temperature_2m`
const response = await fetch(weatherUrl)
const data = (await response.json()) as {
current: {
time: string
precipitation: number
weathercode: number
}
hourly: {
precipitation_probability: number[]
temperature_2m: number[]
}
}
const forecast = {
date: new Date().toISOString(),
maxTemp: Math.max(...data.hourly.temperature_2m),
minTemp: Math.min(...data.hourly.temperature_2m),
condition: getWeatherCondition(data.current.weathercode),
location: name,
precipitationChance: data.hourly.precipitation_probability.reduce(
(acc, curr) => Math.max(acc, curr),
0
),
}
return forecast
},
})
// Plan activities indorrs or outdoors
const planActivities = createStep({
id: 'plan-activities',
description: 'Suggests activities based on weather conditions',
inputSchema: forecastSchema,
outputSchema: z.object({
activities: z.string(),
}),
execute: async ({ inputData, kastrax }) => {
console.log('planActivities')
const forecast = inputData
if (!forecast) {
throw new Error('Forecast data not found')
}
const prompt = `Based on the following weather forecast for ${forecast.location}, suggest appropriate activities:
${JSON.stringify(forecast, null, 2)}
`
const agent = kastrax?.getAgent('planningAgent')
if (!agent) {
throw new Error('Planning agent not found')
}
const response = await agent.stream([
{
role: 'user',
content: prompt,
},
])
let activitiesText = ''
for await (const chunk of response.textStream) {
process.stdout.write(chunk)
activitiesText += chunk
}
return {
activities: activitiesText,
}
},
})
// Plan indoor activities only
const planIndoorActivities = createStep({
id: 'plan-indoor-activities',
description: 'Suggests indoor activities based on weather conditions',
inputSchema: forecastSchema,
outputSchema: z.object({
activities: z.string(),
}),
execute: async ({ inputData, kastrax }) => {
console.log('planIndoorActivities')
const forecast = inputData
if (!forecast) {
throw new Error('Forecast data not found')
}
const prompt = `In case it rains, plan indoor activities for ${forecast.location} on ${forecast.date}`
const agent = kastrax?.getAgent('planningAgent')
if (!agent) {
throw new Error('Planning agent not found')
}
const response = await agent.stream([
{
role: 'user',
content: prompt,
},
])
let activitiesText = ''
for await (const chunk of response.textStream) {
process.stdout.write(chunk)
activitiesText += chunk
}
return {
activities: activitiesText,
}
},
})
const weatherWorkflow = createWorkflow({
id: 'weather-workflow-step2-if-else',
inputSchema: z.object({
city: z.string().describe('The city to get the weather for'),
}),
outputSchema: z.object({
activities: z.string(),
}),
})
.then(fetchWeather)
.branch([
[
async ({ inputData }) => {
return inputData?.precipitationChance > 50
},
planIndoorActivities,
],
[
async ({ inputData }) => {
return inputData?.precipitationChance <= 50
},
planActivities,
],
])
weatherWorkflow.commit()
export { weatherWorkflow }
import { Kastrax } from '@kastrax/core/kastrax'
import { createLogger } from '@kastrax/core/logger'
import { weatherWorkflow } from './workflows'
import { planningAgent } from './agents'
const kastrax = new Kastrax({
vnext_workflows: {
weatherWorkflow,
},
agents: {
planningAgent,
},
logger: createLogger({
name: 'Kastrax',
level: 'info',
}),
})
export { kastrax }
Register Agent and Workflow instances with Kastrax class ✅
Register the agents and workflow with the kastrax instance. This is critical for enabling access to the agents within the workflow.
import { Kastrax } from '@kastrax/core/kastrax'
import { createLogger } from '@kastrax/core/logger'
import { weatherWorkflow } from './workflows'
import { planningAgent } from './agents'
const kastrax = new Kastrax({
vnext_workflows: {
weatherWorkflow,
},
agents: {
planningAgent,
},
logger: createLogger({
name: 'Kastrax',
level: 'info',
}),
})
export { kastrax }
Execute the weather workflow ✅
Here, we’ll get the weather workflow from the kastrax instance, then create a run and execute the created run with the required inputData.
import { kastrax } from "./"
const workflow = kastrax.vnext_getWorkflow('weatherWorkflow')
const run = workflow.createRun()
const result = await run.start({ inputData: { city: 'New York' } })
console.dir(result, { depth: null })